Narrow pore-diameter polypyrrole nanotubes.

نویسندگان

  • Xinyu Zhang
  • Sanjeev K Manohar
چکیده

Bulk quantities of electrically conducting nanotubes of polypyrrole having narrow pore diameter (6 nm) can be synthesized rapidly by chemical oxidative polymerization of pyrrole in the presence of stoichiometric amounts of V2O5 nanofibers. The V2O5 nanofibers act as templates for polymerization and yield, as the initial product, polypyrrole nanotubes with pores filled with V2O5. The V2O5 dissolves readily in aq. 1.0 M HCl, yielding hollow polypyrrole nanotubes having conductivity of approximately 2 S/cm. As-synthesized polypyrrole nanotubes spontaneously reduce noble metal ions to the corresponding metal nanoparticles at room temperature without any capping or dispersing agents. For example, 3-5 nm size nanoparticles of Ag, Au, and Pd, etc., deposit readily on the surface of the tubes which then migrate spontaneously to the pore, and, in the case of Ag, coalesce in the core, yielding 4-8 nm diameter coaxial cables of Ag surrounded by a 20-30 nm thick polypyrrole fiber sheath.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-supported particle-track-etched polycarbonate membranes as templates for cylindrical polypyrrole nanotubes and nanowires: an X-ray scattering and scanning force microscopy investigation.

Self-supported particle-track-etched polycarbonate membranes with nearly perfect cylindrical pores are used for the preparation of similarly perfect cylindrical polypyrrole nanowires and nanotubes. A complete investigation of the structural properties that result at different stages of the preparation route of polypyrrole nanowires and nanotubes is based on a combination of real and reciprocal ...

متن کامل

Controlled electrochemical synthesis of conductive polymer nanotube structures.

We have investigated the electrochemical synthetic mechanism of conductive polymer nanotubes in a porous alumina template using poly(3,4-ethylenedioxythiophene) (PEDOT) as a model compound. As a function of monomer concentration and potential, electropolymerization leads either to solid nanowires or to hollow nanotubes, and it is the purpose of these investigations to uncover the detailed mecha...

متن کامل

Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy lay...

متن کامل

Fabrication of Polypyrrole Nanowire and Nanotube Arrays

Large area highly uniform and ordered polypyrrole nanowire and nanotube arrays were fabricated by chemical oxidation polymerization with the help of a porous anodic aluminium oxide (AAO) template. Under 0.2 moL/L pyrrole (H2O) and 0.2 moL/L FeCl3 (H2O) pattern, polypyrrole nanowire arrays were obtained after 2.0 hours polymerization reaction in a two-compartment reaction cell. When the reaction...

متن کامل

Fabrication and optical properties of gold nanotube arrays

Arrays of gold nanotubes with polypyrrole cores were grown on glass substrates by electrodeposition into thin film porous alumina templates. Measurements of optical transmission revealed strong extinction peaks related to plasmonic resonances, which were sensitive to the polarization state and angle of incidence. On prolonging the electrodeposition of gold, the polypyrrole core became fully enc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 41  شماره 

صفحات  -

تاریخ انتشار 2005